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Abstract

Heat transfer in the entrance-region ¯ow of viscoplastic materials inside tubes is analyzed. The ¯ow is laminar and the

material viscosity is modeled by the Herschel±Bulkley equation. The conservation equations are solved numerically via a ®nite

volume method. Two di�erent thermal boundary conditions are considered, namely, uniform wall temperature and uniform wall

heat ¯ux. The e�ect of temperature-dependent properties is also investigated. The Nusselt number is obtained as a function of the

axial coordinate, yield stress, and power-law exponent. Results show that the same trend is observed for the two thermal

boundary conditions, but the Nusselt numbers are always higher for the iso¯ux-wall cases. The length of the entrance region

decreases as the material behavior departs from the Newtonian one. Finally, it is observed that neglecting the temperature de-

pendence of material properties may introduce important errors in the heat transfer coe�cient. Ó 1999 Elsevier Science Inc. All

rights reserved.

Keywords: Flow of viscoplastic materials; Forced convection through short ducts; Herschel±Bulkley materials

International Journal of Heat and Fluid Flow 20 (1999) 60±67

Notation

a sensitivity of yield stress to temperature,
� ÿ�ds0=dT �=s0 (1/K)

b sensitivity of consistency index to temperature,
� ÿ�dK=dT �=K (1/K)

c speci®c heat (J/kg K)
D tube diameter (m)
f friction factor, � �2�@p=@x�D�=�qu2�
h heat transfer coe�cient (W/m2 K)
K consistency index (kg/m s2ÿn)
Kref consistency index at reference temperature (kg/m s2ÿn)
n power-law exponent
Nu Nusselt number, � hD=j
p pressure (Pa)
p0 dimensionless pressure
Pe Peclet number, � uD=a
Pr Prandtl number, gcc=j
qw wall heat ¯ux (W/m2)
r radial coordinate (m)
r0 dimensionless radial coordinate, � r=R
R tube radius (m)
Re Reynolds number, � quD=gc

T temperature ®eld (�C)
Tb bulk temperature (�C)
Ti inlet temperature (�C)
Tref reference temperature (�C)

Tw wall temperature (�C)
u x-component of velocity (m/s)
u mean axial velocity (m/s)
u0 dimensionless x-component of velocity, � u= _ccR
u0 dimensionless mean axial velocity, � u= _ccR
v velocity vector (m/s)
v r-component of velocity (m/s)
v0 dimensionless r-component of velocity, � v= _ccR
x axial coordinate (m)
x0 dimensionless axial coordinate, � x=R
x� inverse Graetz number, � x0=Pe

Greek
a thermal di�usivity, � j=qc (m2/s)

_c deformation rate, �
����������
1
2
tr _c2

q
(sÿ1)

_c0 dimensionless deformation rate, � _c= _cc

_cc characteristic deformation rate (sÿ1)
_c rate-of-deformation tensor (sÿ1)
g viscosity function (kg/m s)
g0 dimensionless viscosity function, � g=gc

gc characteristic viscosity (kg/m s)
j thermal conductivity (W/m K)
h dimensionless temperature, � �T ÿ Tw�=�Ti ÿ Tw�
q mass density (kg/m3)
s magnitude of the extra-stress tensor,�

����������
1
2
trs2

q
(Pa)

s0 yield stress (Pa)
s0ref yield stress at reference temperature (Pa)
s extra-stress tensor (Pa)
U dimensionless temperature, � �T ÿ Ti�=�qwD=j�* Corresponding author. E-mail: pmendes@mec.puc-rio.br.
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1. Introduction

There are a large number of industrial processes, such as
the ones found in the industries of petroleum, cosmetics, foods,
plastics, paints and pharmaceutical, that somehow deal with
viscoplastic materials. Frequently, these processes involve non-
isothermal situations, and the temperature distribution in the
material must be known in order to allow control of its rhe-
ology.

An important example is found in the process of drilling
petroleum wells. Drill muds have a key role in this process.
They are typically concentrated suspensions, and, conse-
quently, highly non-Newtonian in nature. They should have
the correct density to provide the pressure needed for well
integrity and for avoiding premature production of hydro-
carbons. Their rheological properties must be such as to allow
carrying rock particles that are generated during drill opera-
tion, with a minimum of pumping power. This requires a
highly shear-thinning rheological behavior. Also, the success
of a well cementing operation depends to a great extent on the
knowledge and control of the cement rheological properties.
Because the material properties are strong functions of tem-
perature, and because these ¯ows are not isothermal, heat
transfer information is needed to allow reliable designs of such
costly drilling or cementing operations.

Heat transfer to Bingham plastics and power-law ¯uids in
laminar ¯ow through tubes has been investigated to some ex-
tent. Bird et al. (1983) presented an overview of the rheology
and ¯ow of viscoplastic materials, and analyzed some simple
¯ow situations using a Generalized Newtonian Liquid (GNL)
model with a Bingham plastic viscosity function. For fully
developed laminar ¯ow of power-law ¯uids in tubes, Bird et al.
(1987) gave Nu� 3.657, 3.949 and 4.175, respectively, for the
power-law exponent n� 1, 0.5 and 1/3 and uniform wall
temperature. For uniform wall heat ¯ux, an analytical solution
is easily obtained (Irvine and Karni, 1987)

Nu � 8�5n� 1��3n� 1�
31n2 � 12n� 1

: �1�
A comprehensive research focusing on the heat transfer

problem in the developing ¯ow of power-law ¯uids through
tubes has been performed by Joshi and Bergles (1980a, b). In
this study, they obtained correlations for qw �constant, and
considered the temperature dependence of K. Another exper-
imental study for ¯ow and heat transfer to pseudoplastic ma-
terials is presented by Scirocco et al. (1985). In both studies, at
the inlet of the heated portion of the test section the velocity
pro®les are already fully developed. Richardson (1987) pre-
sents asymptotic solutions for power-law ¯uids considering a
temperature-dependent consistency index. Vradis et al. (1992)
analyzed the heat transfer problem in the simultaneously de-
veloping ¯ow of a Bingham material, assuming uniform wall
temperature and constant thermophysical properties. In this
numerical study, axial conduction is neglected. The analysis
reported by Blackwell (1985) for Bingham materials also as-
sumes constant properties and uniform wall temperature.
Moreover, axial conduction is also neglected, and the ¯ow is
considered hydrodynamically developed from the tube inlet.

Forrest and Wilkinson (1973), and, more recently, Nouar et
al. (1994), studied the heat transfer problem of the Herschel±
Bulkley materials ¯owing inside tubes. These works considered
hydrodynamic development from the tube inlet, and neglected
axial conduction. In Forrest and Wilkinson's numerical study,
both the uniform wall heat ¯ux and the uniform wall tem-
perature thermal boundary conditions have been investigated.
Nouar et al. (1994) reported a theoretical and experimental
study, considering a constant wall heat ¯ux boundary condi-
tion. In this paper, the impact on velocity pro®les and Nusselt

numbers of temperature-dependent rheological properties is
discussed. In a similar study, Nouar et al. (1995) obtained
numerical results assuming fully developed ¯ow at the entrance
of the heated region. Axial conduction was neglected, and the
temperature dependence of the consistency index was consid-
ered. Correlations for friction factor and Nusselt number were
also proposed.

For turbulent ¯ow, the thermal boundary condition as-
sumes minor importance, and the entry length becomes much
shorter. Moreover, the shear rates are so large that the yield
stress limit becomes unimportant. Therefore, information for
power-law ¯uids and for fully developed ¯ow can be employed
for a wide range of situations. Irvine and Karni (1987) rec-
ommend Yoo's correlation, valid in the range 0:26 n6 0:9:

jH � Nu

Re Pr1=3
� 0:0152

Re0:155
; �2�

where

Re � q�u2ÿnDn

K
2�3n� 1�

n

� �1ÿn

�3�
and

Pr � Kc
j
�3n� 1�

4n

� �nÿ1
8�u
D

 !nÿ1

: �4�

In the above expressions, D is the tube diameter, q the mass
density, �u, the average velocity, c, the speci®c heat, and j the
thermal conductivity. Yoo's correlation can be used for Re's in
the range 30006Re6 90000. From Eq. (2), it can be seen that
jH is a rather weak function of Re.

Another important point discussed in the literature of vis-
coplastic materials is the numerical di�culty in using the von
Mises yield criterion. Essentially two types of modi®cation of
the Bingham plastic viscosity function have been proposed to
handle this, namely, the bi-viscosity model (Lipscomb and
Denn, 1984; Gartling and Phan-Thien, 1984; O'Donovan and
Tanner, 1984), and Papanastasiou's model (Papanastasiou,
1987). Both modi®cations have been used successfully in an-
alyses and numerical simulations of di�erent complex ¯ows
(e.g., Ellwood et al., 1990; Abdali et al., 1992; Beverly and
Tanner, 1992; Wilson, 1993; Wilson and Taylor, 1996; Piau,
1996).

In the present work, laminar heat transfer coe�cients for
entrance-region ¯ows through tubes of viscoplastic materials
are presented. Numerical results for both the isothermal-wall
(Tw � constant) and the iso¯ux-wall (qw � constant) thermal
boundary conditions are obtained. The case of simultaneous
velocity and temperature development is considered, and axial
conduction is accounted for in the analysis. The mechanical
behavior of the material is assumed to be well represented by
the Generalized Newtonian Liquid model (GNL), which gives
excellent results when the main goal is to obtain a ¯ow rate/
pressure drop, or ¯ow rate/drag force relationship. In this
model, the extra-stress tensor s is given by

s � g _c: �5�
In the above equation, _c is the rate-of-deformation tensor,
de®ned as grad v� �grad v�T, where v is the velocity vector.
The quantity g is the viscosity function, assumed here to be of
the Herschel±Bulkley form

g � s0= _c� K _cnÿ1 if s > s0;

1 otherwise:

(
�6�

In Eq. (6), s0 is the yield stress, s �
����������
1
2
trs2

q
a measure of the

magnitude of s, _c �
�����������
1
2
tr _c2

q
a measure of the magnitude of _c,

K the consistency index, and nthe power-law exponent. Typi-
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cally K and s0 are sensitive to the temperature of the material.
However, for drilling muds and cements, the power-law ex-
ponent, n, is often independent of temperature variations.
These three parameters (s0, K and n) are normally determined
via least squares ®ts to experimental shear (s� _c) data. In most
of the present work, these rheological parameters were as-
sumed to be independent of temperature. However, in order to
assess the validity of this assumption, some results were ob-
tained assuming that s0 and K are the following functions of
temperature:

s0 � s0ref e
ÿa�TÿTref �; �7�

K � Kref e
ÿb�TÿTref �: �8�

In these equations, s0ref and Kref are the values ofs0 and K at a
reference temperature, which was chosen to be the inlet tem-
perature for the cases with uniform wall heat ¯ux, and the wall
temperature for the uniform wall temperature cases. The ref-
erence values and parameters a and b were obtained via least-
squares ®ts to measured data for mayonnaise (Soares, 1996).

Results are presented in terms of velocity, pressure and
temperature ®elds. The variation of the heat transfer coe�cient
with the inverse Graetz number and some rheological pa-
rameters are also presented. As far as the authors know, this is
the ®rst heat transfer study of laminar entry-region ¯ow of
viscoplastic materials through tubes which considers the si-
multaneous hydrodynamic and thermal development.

2. Analysis

In the analysis, the ¯ow is assumed to be steady and axisym
metric. The hypothesis of constant thermophysical properties
is also employed. The mass, momentum and energy conser-
vation equations, in conjunction with the GNL (Eq. (5))
constitutive equation and appropriate boundary conditions,
govern this physical situation.

In order to obtain representative dimensionless governing
equations and dimensionless parameters, the choice of char-
acteristic quantities is crucial. For this problem, it is appro-
priate to choose fully developed values of some key quantities
as characteristic quantities, as discussed next.

The characteristic shear rate, _cc, is chosen to be the one that
occurs at the tube wall in the fully developed region, and at the
reference temperature:

_cc �
sR;fd ÿ s0ref

Kref

� �1=n

; �9�
where sR;fd is the shear stress at the wall in the fully developed
region, which can be easily related to the pressure drop by
means of a force balance:

sR;fd � ÿ srx�R�� �fd � ÿ
dp
dx

� �
fd

R
2
� Dp

Lfd

R
2
: �10�

The subscript ``fd'' indicates that the quantity is to be
evaluated in the fully developed region. In the above expres-
sion, p is the pressure, x the axial coordinate, R the tube radius,
and Lfd a tube length in the fully developed region to whose
ends the pressure di�erence Dp corresponds.

The characteristic viscosity is chosen as

gc � g� _cc� �
sR;fd

_cc

: �11�
The dimensionless shear rate and viscosity are respectively

de®ned as

_c0 � _c= _cc; g0 � g=gc: �12�

Using the above de®nitions, the dimensionless viscosity
function can be written as

g0 � r00= _c0 � �1ÿ r00� _c
0nÿ1 if s0 > r00;

1 otherwise:

(
�13�

where

s0 � s
sR;fd

and r00 �
r0

R
� s0ref

sR;fd

: �14�

A result of interest is the expression for the fully developed
wall shear rate, _cc:

_cc �
�u

�u0R
� �u

R
n� 1

2n
1

2
1ÿ r00
ÿ �ÿ n

2n� 1
r00
ÿ ��1ÿ r00�2

�
ÿ n

3n� 1
1ÿ r00
ÿ �3

�ÿ1

: �15�

In this equation �u is the average velocity and �u0 the corre-
sponding dimensionless quantity, given by �u0 � �u=R _cc (Souza
et al., 1995; Soares et al., 1997). Clearly, the above equation
can be rewritten as a useful relationship between ¯ow rate and
pressure drop. It is also interesting to observe that it reduces to
the well-known expressions for the wall shear rate for fully
developed ¯ow of power-law (r00 � 0) and Newtonian
(r00 � 0; n � 1) ¯uids, namely

_cc; power-law �
8�u
D

 !
3n� 1

4n
;

_cc; Newtonian �
8�u
D

 !
: �16�

2.1. Conservation of mass and momentum

Using the above de®ned characteristic quantities, the con-
servation equations can be reduced to their dimensionless
forms. The mass and momentum equations for the entrance
region of a steady laminar ¯ow of a Herschel±Bulkley material
through a duct are thus given by

@u0

@x0
� 1

r0
@�r0v0�
@r0

� 0; �17�

v0
@u0

@r0
� u0

@u0

@x0
� ÿ @p0

@x0
� 2�u0

Re

1

r0
@

@r0
g0r0

@u0

@r0

� �
� @

@x0
g0
@u0

@x0

� �� �
;

�18�

v0
@v0

@r0
� u0

@v0

@x0
� ÿ @p0

@r0
� 2�u0

Re

@

@r0
1

r0
@

@r0
g0r0v0
ÿ �� ��

� @

@x0
g0
@v0

@x0

� ��
: �19�

In these equations, v0 � v=R _cc, x0 � x=R, r0 � r=R, and
p0 � p=q�R _cc�2. The Reynolds number is de®ned as

Re � q�uD
gc

� 2q��u0�nÿ1��u�2ÿnRn

Kref � s0ref��u0�nRn=��u�n : �20�
It is interesting to observe that, when s0ref � 0, Eq. (20) re-
duces to Eq. (3), which is a widely used expression for the
Reynolds number for ¯ows of power-law ¯uids, and which is
often incorrectly used for ¯ows of viscoplastic materials as
well.

The boundary conditions are the usual no-slip condition at
the wall, the symmetry condition at the centerline, uniform
velocity pro®le at the tube inlet, and locally parabolic ¯ow at
the outlet:
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@u0

@r0
�0; x0� � 0; v0�0; x0� � 0;

u0�1; x0� � 0; v0�1; x0� � 0;

u0�r0; 0� � �u0; v0�r0; 0� � 0;

@u0

@x0
�r0; L0� � 0;

@v0

@x0
�r0; L0� � 0;

�21�

where L0 � L=R is the dimensionless tube length.

2.2. Modi®ed bi-viscosity model

The viscosity function as given by Eq. (13) is not conve-
nient to handle numerically. The usual approach in numerical
schemes for ¯ows of Bingham plastics is to replace it with
another viscosity function, the so-called bi-viscosity model
(Beverly and Tanner, 1992). This idea can be easily extended to
Herschel±Bulkley materials, yielding the following approxi-
mate representation of the viscosity function:

g0 � r00= _c0 � �1ÿ r00� _c
0nÿ1 if _c0 > _c0small;

g0large otherwise:

8<: �22�

For the case of Bingham materials Beverly and Tanner
(1992) recommend

g0large � 1000: �23�
This value is also employed here. Therefore,

_c0small �
r00

1000ÿ �1ÿ r00� _c0nÿ1
small

' r00
1000

: �24�

2.3. Conservation of energy

Neglecting viscous dissipation e�ects and assuming that the
thermal conductivity is constant, the dimensionless energy
equation for the thermal boundary condition of uniform wall
temperature is given by

u0
@h
@x0
� v0

@h
@r0
� 2�u0

Pe

@2h

@x02
� 1

r0
@

@r0
r0
@h
@r0

� �� �
; �25�

where h � �T ÿ Tw�=�Ti ÿ Tw�, Pe � �uD=a the Peclet number,
and a � j=�qc� the thermal di�usivity.

Similarly, for the thermal boundary condition of uniform
wall heat ¯ux,

u0
@U
@x0
� v0

@U
@r0
� 2�u0

Pe

@2U
@x02
� 1

r0
@

@r0
r0
@U
@r0

� �� �
; �26�

where U � �T ÿ Ti�=�qwD=j�.
From Eqs. (25) and (26), it can be seen that, when viscous

dissipation e�ects are negligible, the in¯uence of rheological
behavior on heat transfer is conveyed through the velocity ®eld
only.

For uniform wall temperature, the boundary conditions for
Eq. (25) are

@h
@r0
�0; x0� � 0; h�1; x0� � 0;

h�r0; 0� � 1;
@h
@x0
�r0; L0� � 0;

�27�

while, for uniform wall heat ¯ux, the thermal boundary con-
ditions should be written as

@U
@r0
�0; x0� � 0;

@U
@r0
�1; x0� � 1;

U�r0; 0� � 0;
@U
@x0
�r0; L0� � 2

Pe
:

�28�

It should be clear that the above boundary conditions at L
have no physical basis whatsoever, but are needed in numerical

integrations where out¯ow boundaries are present. If used
appropriately, however, they typically yield excellent results.

For the uniform wall temperature boundary condition, the
Nusselt number is given by

Nu�x0� � hD
j
� ÿ 2

hb�x0�
@h
@r0
�1; x0�; �29�

where hb is the dimensionless bulk temperature, de®ned as

hb � 2

Z1
0

u0

�u0
hr0dr0: �30�

When the thermal boundary condition at the tube wall is
one of the uniform heat ¯ux, the Nusselt number becomes

Nu�x0� � hD
j
� ÿ 1

�Uw�x0� ÿ Ub�x0�� ; �31�
where

Ub � 2

Z1
0

u0

�u0
Ur0dr0: �32�

2.4. Numerical solution

The conservation equations are discretized by the ®nite
volume method described by Patankar (1980). Staggered ve-
locity components are employed to avoid unrealistic pressure
®elds. The pressure±velocity coupling is handled by the SIM-
PLEC algorithm (Van Doormaal and Raithby, 1984). The
resulting algebraic system is solved by the TDMA line-by-line
algorithm (Patankar, 1980) with the block correction algo-
rithm (Settari and Aziz, 1973) to increase the convergence rate.

A non-uniform 140� 32 grid is employed, with points
concentrated toward the inlet region in the x-direction, and
toward the wall in the r-direction, to resolve the sharp gradi-
ents expected at these locations. The domain length in the axial
direction, L, is equal to ®fteen diameters for the low Pe cases,
and ninety-®ve diameters for the high Pe cases.

Extensive grid tests were performed, which attested that the
solutions obtained are grid-independent. Two kinds of tests,
for the Newtonian and the Herschel±Bulkley materials, were
done. The results obtained were compared with the values
presented in the literature and with the results for ®ner meshes.
For the ¯ow of a Newtonian ¯uid (Pe� 50 and Re� 10), fully
developed value of Nusselt number is less than 0.1% di�erent
from the exact value, presented in Shah and London (1978).
The same error occurs for the fully developed value of the
product between the friction factor and the Reynolds number,
f Re. The average value of the errors for the fully developed
local axial velocities with respect to the analytical solution is
equal to 0:07% for the mesh used (140� 32). However, it is
interesting to note that the length of the entrance region is
rather sensitive to mesh re®nement. Re®ning the grid to 175�
62 decreases it by 8%.

For a Herschel±Bulkley material (n � 0:3; r00 � 0:3), the
di�erences between the 140� 32 and the 175� 62 grid are
0:3% for the f Re, 0:24% for the Nusselt number and 5:72% for
the length of the entrance region. Comparing the results ob-
tained for the fully developed velocity pro®les with the ana-
lytical solution (Souza et al., 1995), the agreement is excellent,
with an average error of 1.14%

A detailed comparison with results available in the litera-
ture for some particular cases for the purpose of validation can
be found in Soares (1996). As an example, Nu results obtained
for a power-law ¯uid are compared with the ones given by
Joshi and Bergles (1980a) in Fig. 1. It can be seen in this ®gure
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that the agreement is quite good, except in a short region
starting at the entrance of the tube. The departure is due to the
di�erent hydrodynamic inlet condition imposed by Joshi and
Bergles (1980a) ± fully developed ¯ow, as opposed to the
uniform velocity pro®le.

3. Results and discussion

Because this problem is governed by an exceedingly large
number of parameters, an extensive parametric analysis is not
practical. Therefore, only a few representative combinations of
the governing parameters are examined.

Fig. 2 shows velocity pro®les at four di�erent axial posi-
tions along the entrance region. It is seen that, close to the tube
inlet, there is a velocity overshoot near the wall. This over-
shoot is related to axial di�usion of momentum, and therefore
cannot be predicted by formulations that consider radial dif-
fusion only. Although milder than the one observed for
Newtonian ¯uids, this e�ect is not negligible, and might have
an important impact in heat transfer.

The results shown in Figs. 3±7 pertain to the uniform wall
temperature boundary condition. Temperature pro®les at
some axial locations are seen in Fig. 3. In order to eliminate
the x-dependence in the fully developed region, these pro®les

are presented as a ratio of h to hb. Because the Prandtl number,
de®ned as Pr � gc=qa � Pe=Re, is equal to 5, the thermal de-
velopment lengths are larger than the corresponding hydro-
dynamic development lengths, indicated in Fig. 2.

Fig. 4. Entrance-region Nu for di�erent r00's and n's (Tw � const:).

Fig. 5. Entrance-region Nu for di�erent r00's and Pe's (Tw � const:).

Fig. 3. Temperature pro®les: Herschel±Bulkley material (Tw � const:).Fig. 1. Comparison of predictions with experimental results.

Fig. 2. Velocity pro®les: Herschel±Bulkley material.
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Fig. 4 shows the Nusselt number variation with the inverse
Graetz number, x� � x0=Pe, for a number of combinations of
r00 and n. It is seen that high r00's imply high velocity gradients
near the wall, as does low n's. For example, the curve for r00 �
0:7 and n � 0:3 falls above all others in Fig. 4, while the curve
for r00 � 0:3 and n � 1:0 gives the lowest Nu for a given x�.
Thus, the combinations of r00 and n which yield higher velocity
gradients at the wall are the ones for which the Nusselt number
is also higher, as expected.

Fig. 5 illustrates the entrance-region Nusselt number vari-
ation with the Peclet number, for some combinations of the
governing parameters. It is interesting to observe that axial
conduction is important in the vicinity of the tube inlet only,
and its e�ect is to increase the Nusselt number. Larger yield
stresses tend to decrease the axial conduction e�ect. On the
other hand, axial conduction is not greatly a�ected by the
power-law exponent in the range investigated.

For the constant-property situations examined in this pa-
per, the Nusselt number depends on the material rheology
through its in¯uence on the velocity pro®le only. Therefore,
axial di�usion of momentum ± which a�ects the velocity ®eld ±
is expected to a�ect the Nusselt number. This is illustrated in
Figs. 6 and 7. It is seen in these ®gures that the e�ect is re-
stricted to the neighborhood of the tube inlet, and is negligible
for high yield stress materials. However, it becomes important

as the rheological behavior approaches the Newtonian (higher
n's and lower r00's).

Results are now shown for the uniform wall heat ¯ux
boundary condition. Fig. 8 shows temperature pro®les at some
axial locations, while Figs. 9±12 present Nusselt number re-
sults. Comparing these results with the ones obtained for the
uniform wall temperature boundary condition, it is seen that
the qualitative behavior is the same, both for the entrance
region and for the fully developed portion of the ¯ow. How-
ever, the Nusselt number values are much higher for the uni-
form wall heat ¯ux boundary condition, as usual.

Finally, Figs. 13±16 illustrate the e�ect of property varia-
tion with temperature on the velocity pro®le and Nusselt
number, for two di�erent combinations of the ¯ow parameters
and for uniform wall heat ¯ux. For both situations examined,
the tube wall was assumed to be hotter than the ¯owing ma-
terial. It can be observed that the velocity pro®le gets sharper
near the wall for both cases, due to the fact that viscosity de-
creases in this region as a result of the wall heating. Therefore,
the development length is larger when viscosity depends on the
temperature. This e�ect on the velocity pro®le causes the
Nusselt number to increase signi®cantly in the entrance region.
As the fully developed region is approached, the deviation gets
smaller, since the radial temperature gradient (and hence the
radial viscosity gradient) becomes milder.

Fig. 8. Temperature pro®les: Herschel±Bulkley material (qw � const:).

Fig. 9. Entrance-region Nu for di�erent r00's and n's (qw � const:).

Fig. 6. Nu�x�� for di�erent r00's and Re's (n � 1, Tw � const:).

Fig. 7. Nu�x�� for di�erent r00's and Re's (n � 0:3, Tw � const:).
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Fig. 12. Nu�x�� for di�erent r00's and Re's (n � 0:3, qw � const:).

Fig. 13. E�ect of variable properties on velocity (Re� 100,

qw � const:).

Fig. 14. E�ect of variable properties on velocity (Re� 500,

qw � const:).

Fig. 15. E�ect of variable properties on Nu (Re� 100, qw � const:).

Fig. 11. Nu�x�� for di�erent r00's and Re's (n � 1, qw � const:).

Fig. 10. Entrance-region Nu for di�erent r00's and Pe's (qw � const:).
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4. Conclusions

Heat transfer in the entrance-region ¯ow of the Herschel±
Bulkley materials inside ducts is investigated. The case of si-
multaneous development of velocity and temperature pro®les
is analyzed. Both the uniform wall temperature and the uni-
form wall heat ¯ux boundary conditions are examined.

The characteristic quantities employed are obtained from
the fully developed analytical solution, which is presented in a
new form. The form of the solution presented in this paper is
more compact, and gives the velocity in terms of two conve-
nient dimensionless parameters, namely, n and r00.

The governing equations are solved numerically via a ®nite-
volume technique. Results are presented in the form of velocity
and temperature pro®les, and entrance-region Nusselt number
axial distributions.

In the entrance region the velocity pro®le presents an
overshoot near the wall. The trends observed for temperature-
and iso¯ux-wall boundary conditions are the same, but, as
occurs in fully developed ¯ows, the Nusselt number in the
entrance region is always higher for the uniform wall heat ¯ux
case. It is also shown that the Nusselt number changes sig-
ni®cantly in the entrance region due to the e�ect of property
variation with temperature.

Acknowledgements

Financial support for the present research was provided by
Petrobras S.A., CNPq, FAPERJ and MCT.

References

Abdali, S.S., Mitsoulis, E., Markatos, N.C., 1992. Entry and exit ¯ows

of Bingham ¯uids. J. Rheol. 36, 389.

Beverly, C.R., Tanner, R.I., 1992. Numerical analysis of three-

dimensional Bingham plastic ¯ow. J. Non-Newtonian Fluid

Mechanics 42, 85±115.

Bird, R.B., Dai, G.C., Yarusso, B.J., 1983. The rheology of ¯ows of

viscoplastic materials. Rev. Chem. Eng. 1, 1±70.

Bird, R.B., Armstrong, R.C., Hassager, O. 1987. Dynamics of

Polymeric Liquids, vol. 1, Wiley, New York.

Blackwell, B.F., 1985. Numerical solution of the Graetz problem for a

Bingham plastic in laminar tube ¯ow with constant wall temper-

ature. Transactions ASME 107, 466±468.

Ellwood, K.R.J., Georgiou, G.C., Papanastasiou, C.J., Wilkes, J.O.,

1990. Laminar jets of Bingham-plastic liquids. J. Rheol. 34, 787±

812.

Forrest, G., Wilkinson, W.L., 1973. Laminar heat transfer to

temperature-dependent Bingham ¯uids in tubes. Int. J. Heat Mass

Transfer 16, 2377±2391.

Gartling, D.K., Phan-Thien, N., 1984. A numerical simulation of a

plastic ¯uid in parallel-plate plastometer. J. Non-Newt. Fluid

Mech. 14, 347±360.

Irvine Jr. T.F., Karni, J. 1987. Non-Newtonian ¯uid ¯ow and heat

transfer. In: Kakacß, S., Shah, R.K., Aung, W. (Eds.), Handbook of

Single-Phase Convective Heat Transfer, Wiley, New York, 20.1±

20.57.

Joshi, S.D., Bergles, A.E. 1980a. Experimental study of laminar heat

transfer to in-tube ¯ow of non-Newtonian ¯uids. J. Heat Transfer,

102, 397±401.

Joshi, S.D., Bergles, A.E. 1980b. Analytical study of laminar heat

transfer to in-tube ¯ow of non-Newtonian ¯uids. AICHE Sympo-

sium Series 199, 76, 270±81.

Lipscomb, G.G., Denn, M.M., 1984. Flow of Bingham ¯uids in

complex geometries. J. Non-Newt. Fluid Mechanics 14, 337±346.

O'Donovan, E.J., Tanner, R.I., 1984. Numerical study of the Bingham

squeeze ®lm problem. J. Non-Newt. Fluid Mechanics 15, 75±83.

Nouar, C., Devienne, R., Lebouch�e, M., 1994. Convection thermique

pour un ¯uide de Herschel-Bulkley dans la r�egion d'entr�ee d'une

conduite. Int. J. Heat Mass Transfer 37, 1±12.

Nouar, C., Lebouch�e, M., Devienne, R., Riou, C., 1995. Numerical

analysis of the thermal convection for Herschel-Bulkley ¯uids. Int.

J. Heat and Fluid Flow 16, 223±232.

Patankar, S.V. 1980. Numerical Heat Transfer and Fluid Flow,

Hemisphere, Washington, DC.

Papanastasiou, T.C., 1987. Flows of materials with yield. J. Rheol. 31,

385±404.

Piau, J.M., 1996. Flow of a yield stress ¯uid in a long domain.

Application to ¯ow on an inclined plane. J. Rheol. 40, 711±723.

Richardson, S.M., 1987. Flows of variable-viscosity ¯uids in ducts

with heated walls. J. Non-Newtonian Fluid Mechanics 25, 137±

156.

Scirocco, V., Devienne, R., Lebouch�e, M., 1985. �Ecoulement laminaire

et transfert de chaleur pour un ¯uide pseudo-plastique dans la zone

d'entr�ee d'un tube. Int. J. Heat Mass Transfer 28, 91±99.

Settari, A., Aziz, K., 1973. A generalization of the additive correction

methods for the iterative solution of matrix equations. SIAM J.

Numerical Analyses 10, 506±521.

Shah, R.K., London, A.L., 1978. Laminar Flow Forced Convection in

Ducts. Academic Press, New York.

Soares, M. 1996. Heat Transfer in Laminar Flow of Viscoplastic

Materials through Short Tubes, M.S. Thesis, Department of

Mechanical Engineering, Catholic University, Rio de Janeiro,

Brazil (in Portuguese).

Soares, M., Souza, Mendes, P.R., Naccache, M.F. 1997. Heat Transfer

to Viscoplastic Fluids in Laminar Flow Through Isothermal Short

Tubes, Revista Brasileira de Ciências Mecânicas XIX, 1, pp. 1±14.
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